

1. Operating characteristics and emissions of harmful substances

To run on	Natural gas	
Methane number	MZ≥80	
Lower heating value	HU=10	kWh/Nm³
Hot water temperature	90/70	°C
A unit with a synchronous generator to generate three-phase current	3 phases, 60Hz	

1.1. Operation power in parallel generation mode(100%)

Deviation of power consumption can be 5%, deviation of heat power production can be 8%, less or more in all possible modes. These are technical details in accordance with DIN ISO 3046-1. All data are valid for parallel network mode. Characteristics of other operation conditions can be sent on demand. Maximal total electric power output in kVA (rated current in accordance with generator rated kilowatt)

Туре	LSA 49.1 M6	
Generator voltage	480	V
Electrical generator power (without overload)	550	kW(el)
Thermal power (Cylinder bank/Lubrication oil/Exhaust gas120°C)	761	kW(th)
Energy consumption	1444	kW

1.2. Operational power at partial load in parallel generation mode (75%)

Generator voltage	480	V
Electrical generator power (without overload)	412	kW(el)
Thermal power (Cylinder bank/Lubrication oil/Exhaust gas 120°C)	592	kW(th)
Energy consumption	1107	kW

1.3. Operational power at partial load in parallel generation mode (50%)

Generator voltage	480	V
Electrical generator power (without overload)	280	kW(el)
Thermal power (Cylinder bank/Lubrication oil/Exhaust gas 120°C)	436	kW(th)
Energy consumption	790	kW

1.4. Self-driven system of emergency power supply

This option can be added on demand.

1.5. Emissions of Harmful Substances in the Environment

Amounts of emissions given for dry exhaust gas with 5% of O2.

(Volumetric flow rate of exhaust gas - see section 3.4)

Nitrogen oxides without a catalyst according to MAN specification	<500	mg/Nm³
Carbon oxides without a catalyst according to MAN specification	<750	mg/Nm³
Carbon oxides with a catalyst (optional, can be delivered on demand)	<300	mg/Nm³
NOX with catalyst (optional, can be delivered on demand)	<250	mg/Nm³

2. Construction / standard items

- Engine and generator shafts are connected to each other with a specially designed coupling
- Engine and Generator housing (SAE 2) are connected with each other via bell flanges torsionalresistant
- The module is built on a frame which is specially customized for vibration damping and protection against torsion.
- Cooling water and exhaust gas heat exchanger is built on the frame

2.1. Engine and equipment

Otto-Gas Engine	MAN F 3262 F 202	
Lambda	1 7	
Culinder configuration	1.7 ;n \/	
Number of cylinders	12	
Bore	132	mm
Stroke	157	mm
Volume	25,8	I
Direction of rotation (looking on the flywheel)	counter clockwise	
Engine speed	1800	1/min
Average piston speed	7,85	m/s
Compression ratio	12:1	
Mean effective pressure	17,1	bar
Standard power in accordance with ISO 3046	580	kW mech.
(not overloaded)		
Lubrication oil consumption up to (without warranty,	0,175	kg/h
at normal load and in 1000 operation hours)		-
Engine width	1240	mm
Engine length	1590	mm
Engine height	1234	mm
Engine weight	1520	kg

Engine

- Base engine MAN E 3262
- Single cylinder heads for two cylinders with high alloy valve seat rings and valves
- Dry cylinder liners
- Flywheel housing SAE 1
- Flywheel 2.392 kg m² with a ring gear
- Suction pipe with mixture inflow on the side of the Flywheel
- Oil unit consisting of oil filter and oil cooler
- Oil sump, 90 liters
- valve plunger made of hard metal
- Camshaft with pulser coil disc for electrical ignition system
- Exhaust manifold dry, with heat insulation
- Crankshaft with counterweights
- without thermostat housing

OEKO 550 G Technical Specification

- 2 x exhaust turbochargers with water cooled turbine housing and pressure oil lubricated bearing and water cooled bearing block
- Two-Stage mixture cooling
- Exhaust gas temperature sensor (NiCr- Ni, type K) 2x
- Cover plate for engine front cover
- Crankshaft without torsional vibration damper
- Crankcase ventilation with multi cyclone oil seperator
- Dipstick
- Special spark plugs for MAN industrial gas engines

Carburation

- Air absorption through dry air filter which is mounted on the unit
- Gas feeding through Venturi gas mixer

Turbo charger

- Turbo charging with two exhaust gas turbocharges
- Two- stage mixture cooling (high and low temperature circuit)
- Throttle valve between mixture coolers and mixture distribution lines

Lubrication oil system

- Lubrication oil pump mounted on the engine for pressure lubrication and piston cooling
- Lubrication oil heat exchanger mounted on the engine
- Replaceable lubrication oil filter mounted on the engine
- Oil level monitor attached to the unit
- Dipstick
- Crankcase ventilation via oil separator integrated in the mixture line

Dual circulation of an engine cooling system with:

- High-temperature circulation with integrated oil cooling and engine cooling system
- Compensators between the engine and the cooling circuit

Start device

• Electrical starter 6,4 kW, 24 V

Ignition system

- microprocessor controlled high-voltage ignition system with low voltage distributor, without any moving parts, wear-free
- Automatic adjustment of ignition energy
- Variable ignition timing
- Detectors on the flywheel and camshaft
- One spark coil for each cylinder
- Industry engine spark plugs

2.2. Generator

Self-regulating brushless pole synchronous generator with built-in exciter, voltage and Cos phi controller. Design according to VDE0530, radio interference level N, low harmonic design.

Generator voltage	480	V
Rated Power	783	kVA
Insulation class	н	
Temperature rise class	н	
Power factor (cos phi)*	1	
Frequency	60	Hz
Rotational speed	1.800	1/min
Generator efficiency (at full load) at cos-phi 1	98,1	%
Max. ambient temperature	40	°C
Max. altitude above sea level	1000	m
Protection type	IP 23	

2.3. Heat exchange system

Engine cooling water circuit (HT)

- Plate heat exchanger engine cooling / heating water
- Cooling water pump
- Self-adjusting mixing valve or ELCB controlled external pump for the cooling water circuit
- Expansion tank
- Pressure controlling cooling water
- Pressure relief valve

Mixture cooling water circuit (2nd stage, LT)

- Pump for second stage mixture cooler
- Expansion tank (note max water volume) with pressure monitoring
- Pressure relief valve

The cooling water information is based on a share of 30% antifreeze

Engine cooling (engine cylinder block with lubrication oil)

Thermal power (8% tolerance)	291	kW
Min.temperature of cooling liquid at inlet	76	°C
Max.temperature of cooling liquid at outlet	88	°C
Max. difference between temperatures at inlet and outlet	6	К
Min. volume of cooling liquid to circulate	682	l/min
Pressure losses	0,78	bar
Max. allowable pressure	3	bar

Air-and-fuel mixture cooling (2. stage — low temperature)

Thermal power (8% is tolerance)	95	kW
Temperature of cooling liquid at inlet	40	°C
Minimum volume of cooling liquid to circulate	251	l/min
Pressure losses	0,7	bar
Max. Permissible pressure	2	bar

Plate heat exchanger in engine circulation

Thermal power (8% is permissible)	386	kW
Temperature of cooling liquid at inlet	80	°C
Temperature of cooling liquid at outlet	86	°C
Water temperature in heating system at inlet	70	°C
Water temperature in heating system at outlet	81	°C

2.4. Gas feeding

Adjusting gas paths are supplied not connected; the following key parts are included according to directive for gas components 90/356/EWG

Adjusting gas path

- Shutoff gas cock
- Gas filter
- Two magnetic valves
- Low pressure controller
- Flexible pipeline made from stainless steel

2.5. Unit control system

Control unit device

Control unit case IP 54 RAL 7032

Includes: control, operating units, service and protection elements, Network connection from below 3x 480V, N - neutral conductor, PE - protector, 60 Hz

Possible variant: separate power supply for own use (auxiliary drive)

Power section

- ✓ Integrated power protection with electronically switching system
- ✓ Short time delayed generator-short circuit protection with adjustable operating value
- ✓ Undelayed generator-short circuit protection with fixed operating value

Network protection

Certified coupling (electromagnetic) switch controls voltage and frequency of electric network

Control functions

- Module plan of administration and control Siemens Simatic S7
- Black-and-white display 5,7"
- Engine monitoring (regulating of temperature, lambda)
- Generator control
- Network control
- rotational speed control/ power control
- Interface: Ethernet TCP / IP, Profinet; optional: Profibus IEC 60870-5-104-Slave
- •

3. Operating supplies

Essential characteristics of adjustment of coolant, fuel, lubrication oil, exhaust gas condensate and heating liquid condensate are set in accordance with up-to-date instructions of MAN on operating/use materials

3.1. Capacitive information

Capacitive information for lubrication oil (the first fill-in min./max.)	102	litre
Capacitive information for lubrication oil (oil change)	100	litre
Engine coolant	27	litre

3.2. Heat production

Temperature of backflow in heating system	70	°C
Temperature of supply flow water in heating system	90	°C
Volumetric flow rate of water in the heating system	32,7	m³/h
Maximum permissible operating pressure (Plate HEX)	3,5	bar
Pressure losses at standard flow (between coupling flanges)	50	mbar

3.3. Combustion air/ Ventilation

Heat radiation of the engine	52	kW
Min. volumetric flow rate of intake air for Machine cooling (ventilation parameters of premises must be counted and adapted according to gas fuel requirements which are in force at the place of construction).	8520	m³/h
Volumetric flow rate of exhaust air	6420	m³/h
Air amount for combustion	2699	kg/h
Min.temperature of incoming air (under different temperature conditions these parameters must be counted as agreed)	18	°C
Max.temperature difference between incoming and exhaust air	35	К
Max permissible intake low pressure before the air filter	15	mbar

3.4. Exhaust gas

Thermal power at 120 °C (tolerance 8%)	335	kW
Exhaust gas temperature (at the engine outlet)	454	°C
Exhaust gas mass flow rate, wet	3172	kg/h
Exhaust gas flow rate, dry (0°C, 1013 mbar)	2530	Nm³/h
Allowed backpressure after the engine	40	mbar

Separate pipelines for exhaust gases must be constructed at a mini-CHP unit. Under partial load operation exhaust temperature can reach 550 °C. If a catalyst is used temperature of exhaust gas can reach 600 °C due to exothermal reaction.

3.5. Noise level

A 11 11 11	r .	c		
Acoustic radiation	from an engine	surface without	onenings inlet and	outlet naths
/ coustic ruulation	nom un engine	Juniace without	openings milet und	outiet putils

Frequency (Hz)	Noise power lev	vel
63	67,8	dB (A)
125	71,9	dB (A)
250	96,4	dB (A)
500	94,3	dB (A)
1000	99,3	dB (A)
2000	97,4	dB (A)
4000	96,3	dB (A)
8000	95,0	dB (A)
Total sound power	106,2	dB (A)

Sound level at an exhaust pipe mouth without using a silencer according to DIN 45635-11

Frequency (Hz)	Noise power leve	el
63	93,4	dB (A)
125	103,1	dB (A)
250	103,8	dB (A)
500	109,4	dB (A)
1000	113,1	dB (A)
2000	115,7	dB (A)
4000	117,6	dB (A)
8000	114,4	dB (A)
Total sound power	122,3	dB (A)

3.6. Couplings

All coupling flanges must meet the demands of DIN 2501 if there are no other comments. Nominal diameter and nominal pressure:

safety gas path*

Exhaust gas outlet (compensator)

Heating system water inlet / outlet

Input and output lubrication oil

Pipe coupling according to DIN 3861

*) dimensions depend on gas pressure and gas quality

Flange DN 65 Flange DN 200 Flange DN 80

Bayonet connection 1/2"

3.7. Dimensions and weight of a unit

Engine / generator incl. Noise reducing cover

Length	3700	mm
Width	1500	mm
Height	2100	mm
Unit (unladen weight)	4685	kg
Unit (operating weight)	4820	kg

Control Cabinet

Width	1200	mm
Depth	400	mm
Height	2000	mm

See design drawings for essential dimensions and weight can vary due to generator voltage. Other dimensions on demand.

The manufacturer can make changes and corrections in documents due to technical modifications of units